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The acceptability of approximate solutions of differential equations with respect to some of the variables is 

considered. The notion of acceptability is defined, generalizing a definition used in [I] in a study of the 

acceptability of precessional equations of gyroscopic systems. Lyapunov functions are introduced accor- 

dingly and used to solve the problem of acceptability. As an application, the possibility of reducing the 

order of the equations of motion for some mechanical systems is discussed. 

THE IDEA of using Lyapunov functions to solve a~eptability problems goes back to Chetayev, who 
pointed out certain features common to such problems and problems of the stability of motion 121. 

1. STATEMENT OF THE PROBLEM 

Suppose we are given a dynamical system 

@ldt = Y@, Y, a), Y ER”, aE’R’ (1.1) 

where ta0 is an independent variable (time) and a is a vector of constant real parameters whose 
values lie in a given region S (a E S). 

Let us assume that a certain vector-values function 

u’ft, a) = @r(t, a), p . . , un(t, a)) (1.2) 

is an approximate solution of system (l.l), and that it is defined and continuous together with its 
derivative duldt for t 2 to, a E S (u’ denotes a column vector). 

In order the compare the approximate solution (1.2) with the solutions of system (l.l), we set 
y = u(t,a)+x. Th e variables x will satisfy the following equation 

dx/dt = Y(t, u(t, a) + x, a) - du(t, a)/& (3.3) 

Throughout, we shall assume that system (1.3) satisfies the requisite conditions for the existence 
and uniqueness of its solutions y = x (t, to, ~0, a) in the regions under consideration. 

Depending on the conditions of the problem, suppose we single out some of the variables y, , . . . , 
j, (m <n) and the corresponding deviations xl, . . . , x, . Define the following regions (para- 
llelepipeds) in the space of the variables x1, . . . , x, by appropriate inequalities 

fi,=lx: lx,l<eel, lxplGe~1 

iis=Ix: lX,lG61<E,, lX~l~6,<EJ, (fX=l, . . . . m;@=mtL . . . . n) 0.4) 

The set of boundary points will be denoted by INI. 
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Defirzition 1. An approximate solution (1 .I!) is acceptable with respect to the variables rrC i o .= 1 
. . nz) if, for any prescribed numbers cl >O, &>(I (the first may be as small as desired and thy 

second large), a parameter value a* ES and numbers Ed > 0, 6, > 0 defining regions ( 1.4) exist such 

that, for the solutions of system (1.3), x(t, to, xg, a*) E IL (fd co), whenever X,,E Ii,. 

We will consider real single-valued functions v = u(t, x, a) which are defined and continuous 
together with their derivatives &.dat, ?m/d.r, (s = I. , u) in a region 

r =I x: lxcyl G/z, l”pI<o”I, t2tt,, aES (2.1) 

assigning them “property A” [3]. 

Defirzition 2. A function u = U(X, a) possesses property A with respect to variables x, if, for any 
ei >O (ei <h), &>O there exist a* E S and numbers E~z)(), A1 >O. that depend on the specified E) 
and I!&, such that the following inequality holds for the regions (1.4) thus defined 

inf [u(x, a* ) : x f ii,\Il,] > sup ]u (x, a* ): x E Ii6 ] i,‘zJ 

Definition 3. A function u = v(t, x, a) possesses property A with respect to variables _K~ if there are 
functions w(x, a), W(x, a), defined in the region (2.1), which satisfy the inequality 

w(x, a) G u(t, x, a) < W(x, a) (2.3) 

and for any el > 0 (er < h), s2 > 0 there exist a* ES and numbers eL > 0, 6, > 0. that depend on the 
specified l l and &, such that the following inequality holds for the regions (1.4) thus defined 

inf[w(x, a*): xE ii,\&] > sup]W(x, a*): XE IIs] !2.4’) 

It is obvious that the functions w and W have property A with respect to s,, in the sense of 

D~~niti(~n 2. 
Let us consider property A in relation to some functions that are used fairly often in appli~ati~}Ils. 
1. It is obvious that a quadratic form must be positive definite in the region a ES. Setting x6, = &, . 

x~3=~~--,,l(ff=1 ,_.., m;j3=mil. . . ..n.k=n-rn). wecanwriteaformv(x.a)=x’D(a)x 
[D(a)=I/dij(a)I/(i,;= 1,. .,~I)]w 

u(x, a) = g’hfl + 2t’Nn + n%n (M=M’, L =L’) 

EER”, TyEzP, x= col(&77) 

(2.5) 

The matrices M, N and L are continuous functions of the parameters a for which u is positive 
definite. 

Let {I */I denote the Euclidean norm. 
Suppose pi and S, are specified. Define sets 

r ‘* =! x: 11~11 = et. llrtll <*I, ra, =1x: llfll =o, ilrlll as,&\ (Lb} 

The function 11(x, a) of (2.5) has property A with respect to 5 if a value of the parameter a* exists 
such that 

II = min[u(x, a*): xE rcr ] > l2 = max[u(x, a*): xE r6$ ] (2.7) 

Indeed, if inequality (2.7) holds, the ellipsoid U(X, a’) = II contains the set 1‘5.. . hence. for sufficiently small 

s,, the corresponding region il, of (1.4) is also contained in the ellipsoid. The parallelepiped fl, of (1.3) is 

defined by the same ellipsoid: for sufficiently small ~2. the region 1‘1, contains the etlipsoid. Thus inequality 

(2.2) is satisfied. 
Condition (2.7) may be written in a more-useful form. The stationary values of X$X, a) (2.5) on the 

set IC, are defined by expressions hi4 (i = 1, . . m), where hi(a) >(I are the roots of the equation 
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det@i-ZVL-IN’-- hE) = 0 (2.8) 

On the other hand, the stationary values of the same form on the set IS2 [see (2.6)] are Vjk$ 
(j= 1,. . .) k), where q(a) >O are the roots of the equation 

det(L-uE)=O (2.9) 

Then condition (2.7) is equivalent to the inequality 

&n&*le~ >&,,(a*)~1 (2.10) 

where hmin (a*), v,, (a*) are the least and greatest roots of Eqs (2.8) and (2.9) when a = a*, 
For example, for M = 2, m = 1 inequality (2.10) may be written in terms of the difs as follows: 

(d;, -d:,P,,)e: >d,,6; 

2. Consider a function u = v(t, x, a) satisfying estimates (2.3) 

WI (x, a) G u(t, x, a) G W2(x, a) 

where Wi (i = 1, 2) are positive definite quadratic forms in S. Clearly, v possesses property A with 
respect to xe if a parameter value a* exists such that 

Et = min [Wt(x, a*): x E FEl ] > i, = max [&(x, a*): x E Fs2] (2.11) 

Indeed, if this inequakty holds, the ellipsoid W, (x, a*> = I1 will contain the set F,, ; hence, for sufficiency 
small 61 r the ~ar~Ie~~~~~d l$ of (1.4) wiff also be in the ellipsoid. The latter, in turn, is a subset of the eilipsoid 
W, (x, a*) = fi, that contains it. Thus, we have constructed regions (1.4) satisfying (2.4) for OUT functions 
W;(x, a*). 

Inequality (2.11) may be written in the form 

X(‘f (a*)e? > kP (a*) s# mm - max 1 (2.12) 

where All)(a), v?)(a) are the roots of Eqs (2.8) and (2.9) for the forms liv, and W,, respectively. I 

3. THE METHOD OF LYAPUNOV FUNCTIONS 

The ap~li~tion of the method is based on using functions u that have property A, together with 
their derivatives dv/& along trajectories of system (1.3) 

d~/d~ = at$at + (a~~ax)‘~(~, u(t, a) + x, a) - du(t, a)/&) (3.1) 

The problem of acceptability may be solved effectively by comparing system (1.3) with some 
system of equations for which there is an available Lyapunov function with the required properties. 
Equation (1.3) will then be written as follows f2]: 

dx/dt = X(t, x, a) + f(t, x, a) 

f(t, x, a) = F(f, u(tt a) + x, a) - du(r, a)/& - X(r, ir, a) 

Let us assume, then, that for the system 

(3.2) 

(3.3) 

dx/dt = X(t, x, a) (3.4) 

we know of a function u(t, x, a) with the required properties, whose application to system (3.2) 
implies that the solution (1.2) is acceptable in the sense of Definition 1. 

Suppose that in (3.2) and (3.3) X(t, x, a) = P(a)x, P(a) = jlpq(a)jl (i, j = 1, . . . , n), a > 0. 
We shall assume that all the roots of the characteristic equation have negative real parts, and that 

the functions&(t, x, a) are uniformly bounded with respect to 83 to in any bounded closed region of 
the space {x1, . . . , x, >. This is the situation in many problems. 
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Suppose that, given the system dxldt = P(a)x, we have constructed a positive definite quadratrz 
form 

u(x, n) = x’D(fz)x (D =D’) 4.7.5) 

whose derivative along trajectories of the system is 

(c&J/&)* = -2 II x II2 ii.h! 

Theorem 1. Assume that: 
1. The form v (3.5) has property A with respect to X, . 

2. For any Ed and 6,. a value of the parameter a* exists such that, in addition to ineyuahty (2. I(r). 
it is also true that 

E1(Xmi”(Q*)/P,,,(u*))‘/ >n2NM ( 3 ‘I 1 

where pmax(a*) is the greatest eigenvalue of the form (3.5), N = max / d,j(u”) /. M = sup lf,(r. x, (I I 
‘in the region I? = {x : u(x, a*) G II } and 1, = Amin (a*) 6. 

Then the approximate solution (1.2) is acceptable for system (1.1) with respect to ?;?. 

Proof Let cl and 8, be assigned arbitrarily and let a’ be a value of the parameter satrsfying 
inequalities (2.10) and (3.7). As shown [see (2.7)], since inequality (2.10) holds, the elfipsoid 
u(x, a*) = II determines regions (1.4) for which condition (2.2) holds. The radius R of the sphere 
inscribed in this ellipsoid is found to be R = q (h,,in (u*)/~~~~~ (a*) )I”. The derivative of the function 
(3.5) along trajectories of system (3.2) is determined as follows: 

wx, Q) 
du/dt = -211xl12 + ; fi(~,w+---- 

I=1 axj 
ii.&) 

Since / dv(x, a*)ldxi / G 2n ](x]]N, it follows that the derivative (3.8) satisfies the following estimate 
in t-i 

dIJ(x,o’)~dtG-2Ilxll( II x I( - n2NM) (3 9 1 I 

But condition (3.7) implies that R>n”NM. Hence, by (3.9), du(x,u*)/dt<f) for xfki, whcrc 
r= x: ~~x~~2~~2~~, This means that no solution x(t, to, x0, d’) of system (3.2) [or equivalently. 
(1.3)] with initial data f = t {I, x,,EH, where N = x: v(x,a”)<f, (and, in particular, xnEli6) will 
leave the region at t> to (respectively, remaining also in II, ). Thus the conditions of Definition I arc 
satisfied and the solution is acceptable. 

We now return to system (3.2), assuming as before that u>O and the functions ,f,(r. x, a) arc 
uniformly bounded. 

Suppose that we have constructed a function u(t, x, a) for system (3.4) which satisfies estimates 
partly resembling the conditions for quadratic forms [4]. We are assuming, consequently. that 

w, (x, a) G U(f) x, a) g w2 (K Ql 

(dufdt), G -c,(a)ilxl12, I aufax, I s c2 (ff) II x I ; es(a)>0 (s= 1, 21 
i.3, iii) 

where W, (s = I, 2) are positive definite quadratic forms, and (~~v/dt)* is the derivative of t’ along 
solutions of system (3.4). 

Theorem 2. Assume that: 
1. The function u(t, x, a) has property A with respect to X, . 

2. For any numbers or and a2 a value of the parameter a” exists such that, in addition to inequality 
(2.11), it is also true that 

e*(X:;&*)/P$;x (fz’))Li > nMcl(a*)/cr (a*) (3.11) 

where &&(a*) is the greatest eigenvalue of the form W2 of (3.10) and M = sup [.f;(t, x, a”‘) / in the 
region Ijr = {x: WI (x, a*) d I, $ . 
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Then the approximate solution (1.2) is acceptable for system (1.1) with respect to yas 

Proof. Let l 1 and S, be arbitrary given numbers and a* a value of the parameter satisfying 
inequalities (2.12) and (3.11). As we have shown, when (2.12) is true the ellipsoids WS(x, a*) = II 
(S = 1, 2) determine regions (1.4) that satisfy (2.4). The radius of the sphere inscribed in the 
ellipsoid’ W,(x, a*) = I1 is R2 = (II/pZmax (u*))~‘~. The derivative of v along trajectories of system 
(3.2) is defined as follows: 

(3.12) 

Taking note of (3. lo), we obtain the following estimate for the derivative in A1 

dv(t, x, a’)fdr G -cl (a’) II x ii ( 11 x I- nMcz (u*)/c, (a*)) 

But condition (3.11) implies that Rz>nMc2(u*)/c1(a*). Consequently, du(t, X, a*)/&<0 if _ - 
x E HIV1, where 

& = Ix: Ilxl12 <nMcz(a*)lc~(fz*)l 

Hence it follows that no solution of system (3.2) with initial data c = to, xcEH2, where I& = {x: 
IV2 (x, a*) < ii } (and, in particular, xc f fIs), will leave III (or, respectively, l& ) at time t > to. The 
conditions of Definition 1 are thus satisfied and the approximate solution is acceptable. 

Remark I. If an approximate solution (1.2) of system (1.1) is shown to be acceptable using Theorems 1 and 2, 
one can show that this same solution is acceptable for the system 

dy/‘dt = Y(r, y, oI+ E $ (6 Y, a) 

which depends on two essential positive parameters a and Q. We will limit ourselves to the case in which Eq. 
(3.2) is 

dx/dt = P(a)x + f(t, x, a) + e+(t, u(t, a) +x, a) 

In addition to the assumptions of Theorem 1, we assume that 

I~~(t,u(t,a*)ix,n*)l<I, XEf 

(3.13) 

The derivative of the function (3.5) along trajectories of system (3.13) is 

(3.14) 

Then the derivative satisfies the following estimate for a value of the parameter a* in region H 

du(x, a*)/dt < 21lxll [Ilxll - n*N(M+eI)] 

It follows from this inequality that 

dufx, a*)/dt < 0, if ilxll > n*N(M+ EI) 

But we know that for this value of the parameter a* we have R>n2NM [or, what is the same thing, (3.7)], while 
for sufficiently small E also R> n*N(M + ~1). Thus the assumptions of Theorem 1 are satisfied. 

4. APPLICATION OF THE PROBLEM 

As an application, we will consider some problems that involve reducing the order of the 
equations of motion for a mechanical system 

Aq” + @ + r) q’ + Cq = w(f, q, q; a) (4.1) 

where q’ = (cJ~, . . . , qm) are coordinates, A, B and C are constant symmetric positive definite 
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matrices, r is a constant skew-symmetric matrix. G(a) = L? + I‘ is a non-singular matrix, and *>(J 
and E > 0 are essential parameters. 

As an approximation we take the equation 

c@)P’+cP=o (P’=(P,> ‘* I Pm)) 

for a gyroscopic system, usually called a precessional system. 
We write Eq. (4.2) in normal form 

(4.2) 

p’ = __G --jCp f ‘4 .3 ) 

and let p(t, u) be a solution of this equation at to for fixed po. 
Clearly, the equilibrium position p = 0 of system (4.3) is asymptotically stable, as is the 

equilibrium position q = 0 of system (4.1) when cp- 0. 
Let us consider the acceptability of this approximate solution for Eq. (4.1) with respect to the 

variable q. Putting z = q- p(t, a), substituting into Eq. (4.1) and noting that p(f. a) is a solution of 
Eq. (4.2), we see that for the variable z 

z*‘+A-‘Gz’+A-~CZ = -p”(t, a) + ui-‘~(t, p(t, a) + z, p’(t, a) t z’, aj (4.4) 

In variables z and z’, Eq. (4.4) may be associated with a system of type (3.13) if we put 

x = col(z, z’>, xER, (E = 2m), and also 

0 
P(a) = 

-A-‘C 
f = col(0, -p”@, a)), $t = col(0, A-$) 

Thus, in the notation of (1.4) we must put 

x, = z,, xp=z;Y (cz=l, . , m; /3=m tLy) 

To, solve the acceptability problem, we must construct a quadratic form (3.5) for the 
homogeneous linear system with matrix F’(a) as in (4.5) and check the assumptions of Theorem 1 _I 
with due attention to Remark 3. Expression (3.8) for the derivative becomes 

du/dt = -211~11~ -2 5 ’ 
a=1 i=I 

p,(tF a)d, + a, i xi (4.6) 

Accordingly, we must put 

N=maxld,,,+siW)l, fp&‘(t, a’)1 <M (ff = 1, . . I , m; i = 1, I_ . , n) 

in inequality (3.9). By (4.3), we get 

p”(t, a) = K’(o)p(t, a), K(a) = G-‘C (4.7) 

Remark 2. If B is a positive or negative semidefinite diagonal matrix, then the matrix G = B + I‘ i< 
non-singular. If at the same time B is positive definite, then det // B + r/i >O [S]. 

Example I. The ucceptubi~it~ of the prece~~io~~~ eq~utio~ of a gyroscope. Suppose that Eqs (4. I) are 

q;*+ bq; - aq; + c,q, = w,(f. 9,4’, a) 

q;‘+ bq; + oq; + c, q2 = fq, CC q, q’, a) 

where a, b, cl, c2 and E are positive constants; and a and E are essential parameters. 
The approximate equations (4.3) may be written in the form 

P; = --cc(&,P, +c,&)/A(@), P; = -+tclbc,p, -- c,~,)/A(fi) 

p=a-‘, A(~~)=l+p’b’ 

The solution of Eqs (4.9) for fixed po is bounded 

lP,,z@,tt)l<h, @a@ 

fJ.8) 

(3.9) 
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By (4.7), we obtain 

P; =~‘[-C,(C,-Ir’~‘c,)P,(r,~r)+~c,b(c,+c~)P,(t,~r)]/A’(~c) 

P;=I’* I--W,b@,+Cz)P,fC II) - $(c, - rc’b’c,)P,(f, r)]/A’(ti) 

from which we obtain the estimate 

EP;;,fC C1)l<CcZhl(C,C, +0(/J’)) 

In variables x, we obtain the following system of equations for (3.2) 

dx,fdt=x,, dx,/dt=x, 

dxsjdt = -cIxI - bx, + M-:X* - p;‘(t, r) 

dx,/dt = -c,x, - ~.r-‘x, - &x, - P;(t, /A) 

The coefficients of the form u of (3.5) are defined as follows: 

d = f~-3~,+~2~*+~l+C,)C*C*] d = -JL-‘(c,-cc,) 
ti 

bc,% 

(4.10) 

(4.11) 

(4.12) 

We now proceed to inequalities (2.10) and (3.7). Using expression (2.5) for the form v, assuming, to fix our 
ideas, that cz>ci and using Eq. (2.8), we find that if p is small enough, then Amin = -2p-*b(l + c2). The 
roots of Eq. (2.9) are independent of p. Thus, for any given ~1 and S,, inequality (2.10) will be true, provided 
we take p* small enough. 

If ,u is sufficiently small, it follows from (4.10), (4.11) and (4.6) that inequality (3.7) will hold with 
N = p-*/(bc2), M=&$c1c2. It is immediately seen from the equation /D(p) -pEl = 0 that the quantity 
pmax @FL) is of the same order of magnitude in p as Amin (y). Inequality (3.7) is thus true for sufficiently small p*. 
It follows from Remark 1 that the solutions of Eqs (4.9) are acceptable for system (4.8) with respect to the 
coordinates. 

Example 2. Consider the system 

Q,fab,q;,+c,q,=Elp,(f,q,q’,a) @=f, . . . . m) 

in which b, and c, are positive constants, and a > 0 and E > 0 are essential parameters. 
The approximate equations will be 

(4.13) 

P& = --w,P~ (cc =a-‘, 7, = ca/b& (4.14) 

Their solution isp,(r, II) =pPOexp{-ptty,t}, so thatp~*(~, @CL) = ~‘dp~(t, CL). Since Ipa(t, ru)i<h (taOI, it 
foIIows that ipi*(r, p)I <p2h2, where hi and h2 are suitably defined constants. 

Putting x, = ql2 - Pa(C /h + = q: -p’,(t, p) as before, where /3 = m + a, we obtain a system of equations 

dx,/dt = xp, dxpldt = -c,x,-p-‘b,xp-P~(r,r)+e~~(t,x,~) (4.15) 

which splits at E = 0 into m pairs of independent systems of equations of the type (3.2) in the variables x, and 

+ . 
For each pair of equations, we define a form (3.5) 

v0 = d,x;+ tddx,xa + d& 

whose derivative (3.6) is (dv,/dt)* = -2(x: +xj), and the coefficients are defined by 

(4.16) 

(4.17) 

For system (4.15) we use the form (4.16) u = vi + . . . + v,. Its derivative along trajectories of the system is, 
by (3.14) and (4.6) 
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dv m 
- = -2 II XII’ - 2 I: 
dt cr=1 

[ p&‘(r, /J) + cqa((t, x, M)] (d,px, + dppxp) 

We now look at inequalities (2.10) and (3.7). Clearly, the roots of Eqs (2.8) and (2.9) are A,, (CL) = rl,, -d&’ 

dfia, u,(p) = dpp. Considering expressions (4.17). we conclude that inequality (2.10) will hold for sufficiently 
small values of I_L. The truth of inequality (3.7) for sufficiently small p is no less obvious. Indeed, as ,L-+O the 

right-hand side of (3.7) decreases without limit. The left-hand side has a non-zero limit. We note that the 
eigenvalues p(p) of the form v are determined directly from the equations 

f&w - P) @pp - PI - d& = 0 (a= 1, . . . . m; fl=m+a) 

Choosing a sufficiently small value of p* to satisfy conditions (2.10) and (3.7), and using Remark 1. we 

determine the value of the second essential parameter E. This shows that the solution of (4.14) is acceptable for 

system (4.13). 
In conclusion, we point out that the equations of motion of systems whose matrices of dissipative and 

conservative forces have the form 

B=allb,6,iII~+~llb,ill~, C= IIC,6,jlly + E IICajlly 

can be reduced to the form of (4.13). 
In the case of system (4.13), estimates of the acceptability of a solution of (4.14) will also determine whether 

the system can be decoupled. 
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