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THE APPLICATION OF LYAPUNOV FUNCTIONS TO SOME
PROBLEMS OF THE ACCEPTABILITY OF APPROXIMATE
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The acceptability of approximate solutions of differential equations with respect to some of the variables is
considered. The notion of acceptability is defined, generalizing a definition used in [1] in a study of the
acceptability of precessional equations of gyroscopic systems. Lyapunov functions are introduced accor-
dingly and used to solve the problem of acceptability. As an application, the possibility of reducing the
order of the equations of motion for some mechanical systems is discussed.

THE 1DEA of using Lyapunov functions to solve acceptability problems goes back to Chetayev, who
pointed out certain features common to such problems and problems of the stability of motion [2].

1. STATEMENT OF THE PROBLEM

Suppose we are given a dynamical system
dy/dt =Y(t,y,a), y€R", a€R’ (1.1)

where 120 is an independent variable (time) and a is a vector of constant real parameters whose
values lie in a given region S (a€ S).
Let us assume that a certain vector-values function
u'(f, a)=(u1(tv a): »ary un(t,a)) (12)

is an approximate solution of system (1.1), and that it is defined and continuous together with its
derivative du/dt for t=1,, a€ S (v’ denotes a column vector).

In order the compare the approximate solution (1.2) with the solutions of system (1.1), we set
y = u(t, a) +x. The variables x will satisfy the following equation

dxfdt = Y(t,u(t,a) + x,a) — du(t, a)/dt (1.3)

Throughout, we shall assume that system (1.3) satisfies the requisite conditions for the existence
and uniqueness of its solutions y = x(#, £y, X¢, a) in the regions under consideration.

Depending on the conditions of the problem, suppose we single out some of the variables y, , . . .,
Jm(m<n) and the corresponding deviations x, ..., x,. Define the following regions (para-
llelepipeds) in the space of the variables x,, . . ., x,,, by appropriate inequalities

Ml ={x: |xql<ey, |xp1<e,}
M= x: |xq| <8;<e;, lxgl <8, <er}, (@=1, ..., m;B=m+1, ..., n) (1.4
The set of boundary points will be denoted by IINII.
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Definition 1. An approximate solution (1.2) is acceptable with respect to the variables y, (a0 = 1.,
..., m) if, for any prescribed numbers €, >0, 8,>0 (the first may be as small as desired and the
second large), a parameter value a* €S and numbers €,>>0), 8, >0 defining regions (1.4) exist such
that, for the solutions of system (1.3), x(z. 1,. xo, a*) EIl, (1=1,), whenever x,&11;.

2. LYAPUNOV FUNCTION

We will consider real single-valued functions v = v(z, x, a) which are defined and continuous
together with their derivatives gv/dt, dv/dx, (s = 1. .. .. n) in a region

F={x: |xq|<h, |xp/<}, 214, aES 2.
assigning them “property A™ [3].
Definition 2. A function v = v(x, a) possesses property A with respect to variables x, if, for any

€,>0 (&;<h), 8,>0 there exist a* €S and numbers €,>0, §, >0, that depend on the specified ¢,
and &, such that the following inequality holds for the regions (1.4) thus defined

inf [v(x, a*): x€ T \M.]> supfu(x, a*): x€Tl;] (2.2}

Definition 3. A function v = v(t, X, a) possesses property A with respect to variables x,, if there are
functions w(x, a), W(x, a), defined in the region (2.1), which satisfy the inequality

w(x,a) Sv(f, x,3) SW(x, a) (2.3)

and for any €, >0 (¢, <h), 6,>0 there exist a* €S and numbers €,>0, §,>0, that depend on the
specified €, and ;. such that the following inequality holds for the regions (1.4) thus defined

inf [w(x, a*): x€ M \] > sup [W(x, a*): x € 1l5) (2.4)

It is obvious that the functions w and W have property A with respect to x, in the sense of
Definition 2.

Let us consider property A in relation to some functions that are used fairly often in applications.

1. It is obvious that a quadratic form must be positive definite in the region a€ S. Setting x,, = £,

Xg=Tg_y (@=1,....m B=m+1, ..., nik=n-m), we can write a form v(x, a) = x'D(a)x
[D(@) =|ld;(a)ll G.j=1.....n)]as
v(x,a) = EME+ 26Ny +n'ln M =M, L=L") (2.3)

EeRmu neRky x=COI(E; 7?)

The matrices M, N and L are continuous functions of the parameters a for which v is positive
definite.

Let |- || denote the Euclidean norm.

Suppose €, and 8, are specified. Define sets

Te, =ix: IEl =€, Inl <=}, Ts ={x: [E1=0, jnl <8k} {2.6)

The function v(x, a) of {2.5) has property A with respect to £ if a value of the parameter a*® exists
such that

I = min{u(x,a*): x€ Fe‘] >h = max[v(x,a%): xE€T, | 2.7)

Indeed, if inequality (2.7) holds, the ellipsoid v(x. a™) =/, contains the set I';.: hence, for sufficiently small
8., the corresponding region Tl; of (1.4) is also contained in the ellipsoid. The parallelepiped Il of (1.4) is
defined by the same ellipsoid: for sufficiently small €, the region Il contains the ellipsoid. Thus inequality
(2.2) is satisfied. )

Condition (2.7) may be written in a more-useful form. The stationary values of v(x, a) (2.5) on the
set I', are defined by expressions A€ (i=1, ..., m), where A,(a)>0 are the roots of the equation
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det(M —~NL'N'—~AE) =0 (2.8)
On the other hand, the stationary values of the same form on the set T, [see (2.6)] are v;k83
(j=1,..., k), where v;(a)>0 are the roots of the equation
det(L —vE)=0 (2.9)
Then condition (2.7) is equivalent to the inequality
)\min(a‘)ei >k”max(a‘)6g (2.10)

where Ay (8%), Vinax (@*) are the least and greatest roots of Eqs (2.8) and (2.9) when a = a*.
For example, for n = 2, m = 1 inequality (2.10) may be written in terms of the d;s as follows:

@y~ dfz/dzz)*‘-"% >d225§
2. Consider a function v = v{¢, x, a) satisfying estimates (2.3)
Wi(x, 8) <u(t, x, a) < W, (x, a)

where W, (i = 1, 2) are positive definite quadratic forms in S. Clearly, v possesses property A with
respect to x, if a parameter value a* exists such that

l;=min[W(x,a"): XET, ] >, = max[W;(x,a"): XET},] (2.11)

Indeed, if this inequality polds, the ellipsoid W, (x, a*} = /; will contain the set I';,; hence, for sufficiency
smatll 8, , the parailelepiped 1I; of (1.4) will also be in the ellipsoid. The latter, in turn, is a subset of the ellipsoid
Wi(x, a*) = [;, that contains it. Thus, we have constructed regions (1.4} satisfying {2.4) for our functions
W;(x, a*).

Inequality (2.11) may be written in the form

Aok @) el > k@) @83, 2.12)

min W max

where A{'X(a), »{?(a) are the roots of Eqs (2.8) and (2.9) for the forms W, and W, respectively.

3. THE METHOD OF LYAPUNOV FUNCTIONS

The application of the method is based on using functions v that have property A, together with
their derivatives dv/dr along trajectories of system (1.3)

dvfds = dvfdt + (dvfox) (Y (¢, u(t, a) + x, a) ~ du(z, a)/dr) 3.1

The problem of acceptability may be solved effectively by comparing system (1.3) with some
system of equations for which there is an available Lyapunov function with the required properties.
Equation (1.3) will then be written as follows [2]:

dx/dr = X(¢t, x, a) +{(z, x, 2a) 3.2)
f(r,x,a) = Y(z, u(z, a) + x, a) ~ du(z, a)/dr — X(t,x,3) 3.3

Let us assume, then, that for the system
dx/dt = X(t,x,a) (3.4)

we know of a function v(t, X, a) with the required properties, whose application to system (3.2)
implies that the solution (1.2) is acceptable in the sense of Definition 1.

Suppose that in (3.2) and (3.3) X(t, x, a) = P(a)x, P(a) = |p;(@)| G,j=1, ..., n), a>0.

We shall assume that all the roots of the characteristic equation have negative real parts, and that
the functions f;(t, x, a) are uniformly bounded with respect to £, in any bounded closed region of
the space {xy, . .., x, }. This is the situation in many problems.
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Suppose that, given the system dx/dt = P(a)x, we have constructed a positive definite quadratic
form

v(x,a) =xD{@)x (D=D" (3.5)
whose derivative along trajectories of the system is
(dvfdt), = <2 x| (3.6}

Theorem 1. Assume that:

1. The form v (3.5) has property A with respect to x,,.

2. For any €, and 8, a value of the parameter ™ exists such that, in addition to inequality (2.10),
it is also true that

€1(Amin (@ )/Pax @* N > n*NM (3.7
where prax (a*_) is the greatest eigenvalue of the form (3.5), N = max | d; (@) M =supifie. x, a*

in the region H = {x: v(x,a*)</;} and [, = Apn (%) €.
Then the approximate solution (1.2) is acceptable for system (1.1) with respect to y,,.

Proof. Let €; and 8, be assigned arbitrarily and let a* be a value of the parameter satistying
inequalities (2.10) and (3.7). As shown [see (2.7)], since inequality (2.10) holds, the ellipsoid
v(x, 8*) = I, determines regions (1.4) for which condition (2.2) holds. The radius R of the sphere
inscribed in this ellipsoid is found to be R = €; (Ayin (%Y pmax (@) )2, The derivative of the function
(3.5) along trajectories of system (3.2) is determined as follows:

du(x, a)
ax,'

Since |dv(x, a*)/ox;|<2n||x||N, it follows that the derivative (3.8) satisfies the following estimate
in H

n
dvfdt = =21x1*+ = fi(t,x,a) (3.%)
=1

do(x, a*)/dr < =2|xI(I x | ~n*NM) (3.9

But condition (3.7) implies that R>n*NM. Hence, by (3.9), dv(x, a*)/dt<0 for x& H\l, where
I=x: ||x|P<n’NM. This means that no solution x(z, f,, x¢. a*) of system (3.2) [or equivalently.
(1.3)] with initial data r = 1, X, € H, where H = x: v(x,a") </, (and, in particular, xo € Il5) will
leave the region at t> f, (respectively, remaining also in I, ). Thus the conditions of Definition 1 are
satisfied and the solution is acceptable.

We now return to system (3.2), assuming as before that >0 and the functions f;{t.x, a) are
uniformly bounded.

Suppose that we have constructed a function v(z, x, a) for system (3.4) which satisfies estimates
partly resembling the conditions for quadratic forms [4]. We are assuming, consequently, that

Wi(x, a)<v(t, x, a) < Wy(x, a)

. (3.10)
(dvjdt), < —c,@Ix?,  {ovfox;| <c (@lxl; e@>0 (s=1.2) '

where W, (s = 1, 2) are positive definite quadratic forms, and (dv/dt}, is the derivative of v along
solutions of system (3.4}.

Theorem 2. Assume that:

1. The function v(t, x, a) has property A with respect to x, .

2. For any numbers ¢, and 8, a value of the parameter a* exists such that, in addition to inequality
(2.11), it is also true that

er(AEL @ )08y @)% > nMey (@)ley () (3.11)
where p{), (a*) is the greatest eigenvalue of the form W, of (3.10) and M = sup [f:(t, %, a")| in the

region H, = {x: W, (x,a*) </ }.
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Then the approximate solution (1.2) is acceptable for system (1.1) with respect to y,, .

Proof. Let € and 8, be arbitrary given numbers and 4 a value of the parameter satisfying
inequalities (2.12) and (3.11). As we have shown, when (2.12) is true the ellipsoids W,(x,a*) =1,
(s =1, 2) determine regions (1.4) that satisfy (2.4). The radius of the sphere inscribed in the
ellipsoid W(x, a*) = 1, is Ry = (li/0°max(@*))". The derivative of v along trajectories of system
(3.2) is defined as follows:

dv dv

o2 du(t, x, a)
dt dt

) + 3 L@ x,a) —/—— (3.12)
* =1 0

X

Taking note of (3.10), we obtain the following estimate for the derivative in H;
dvo(t, x,a*)ldt < —ci(@*) Ix i (x| —nMc, @*)/c,(a*))

But condition (3.11) implies that R,>nMc,(a*)/c;(a*). Consequently, duv(t,x,a*)/dt<0 if
xEH 1M1, where

Iy =1x: 1x0? <nMcy(@*)fcy(@*)}

Hence it follows that no solution of system (3.2) with initial data ¢ = &, x, € H,, where H, = {x:
W, (x, a*)<l;} (and, in particular, xo€I1;), will leave H, (or, respectively, I1.) at time ¢>1,. The
conditions of Definition 1 are thus satisfied and the approximate solution is acceptable.

Remark 1. If an approximate solution (1.2) of system (1.1) is shown to be acceptable using Theorems 1 and 2,
one can show that this same solution is acceptable for the system

dyldt = Y(t.y. &) +ey(t y. @

which depends on two essential positive parameters a and e. We will limit ourselves to the case in which Eq.
(3.2) is

dx/dt =P@)x +{(t, x, @) + ey (2, u(t, 2) + X, @) (3.13)
In addition to the assumptions of Theorem 1, we assume that
Il u(, e +x e i<l xel

The derivative of the function (3.5) along trajectories of system (3.13) is

dv n v
_d.;.z——zﬂxﬂii-ifl(f;.'few“)a—x'; (314)

Then the derivative satisfies the following estimate for a value of the parameter a* in region H

du(x, a*)fdt < 20! [ixh — n*NM + €l)]
It follows from this inequality that
du(x, a*)/dr <0, if ixi > n* N + ¢l)

But we know that for this value of the parameter a* we have R >n*NM [or, what is the same thing, (3.7)], while
for sufficiently small € also R>n’N(M + €l). Thus the assumptions of Theorem 1 are satisfied.

4. APPLICATION OF THE PROBLEM
As an application, we will consider some problems that involve reducing the order of the
equations of motion for a mechanical system
Aq +(B+D)q +Cq=¢p(t,q,q,a) 4.1

where @' = (g:, ..., g,,) are coordinates, A, B and C are constant symmetric positive definite
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matrices, I" is a constant skew-symmetric matrix, G(a) = B+ [ is a non-singular matrix, and a>{)
and €>>0 are essential parameters.
As an approximation we take the equation

G@p +Cp=0 ('=(p,, ..., Py)) {4.2)

for a gyroscopic system, usually called a precessional system.
We write Eq. (4.2) in normal form

p=-G'Cp {4.3)
and let p(¢, a) be a solution of this equation at ¢, for fixed py.

Clearly, the equilibrium position p =0 of system (4.3) is asymptotically stable, as is the
equilibrium position q = 0 of system (4.1) when ¢=0.

Let us consider the acceptability of this approximate solution for Eq. (4.1) with respect to the
variable q. Putting z = q — p(¢, @), substituting into Eq. (4.1) and noting that p(¢, a) is a solution of
Eq. (4.2), we see that for the variable z

27 HATGTHATIC2 = —pr(La) tedT ot p(t,a) +2,p(1, @) + 2 ) (4.4

In variables z and z°, Eq. (4.4) may be associated with a system of type (3.13) if we put
x = col(z, 2"}, xER,, (n = 2m), and also

0 E i
= i_A“C gl fElO i a). Y =cl0,47) (45)
Thus, in the notation of (1.4) we must put
Xa=Za, Xg=2y (@=1, ..., m; f=m+a)

To solve the acceptability problem, we must construct a quadratic form (3.5) for the
homogeneous linear system with matrix P(a) as in (4.5) and check the assumptions of Theorem 1.
with due attention to Remark 1. Expression (3.8) for the derivative becomes

m n
dvfdt = 20xI* -2 T X pi(t,a)d,, ., ;% {(4.6)
a=1 =1 .
Accordingly, we must put
N=max|dm+o‘i(a‘)\, ipyt.a ) <M @=1, ..., mi=1 ..., n
in inequality (3.9). By (4.3), we get
Pt @)= K*(@)p(t,a), K(@)=G'C 4.7

Remark 2. If B is a positive or negative semidefinite diagonal matrix, then the matrix G = B+1 s
non-singular. If at the same time B is positive definite, then det||B+T'|[>0 [5].

Example 1. The acceptability of the precessional equations of a gyroscope. Suppose that Eqgs {4.1) are

g, +bq; ~aq,+c,q,=ep, {1, 4,4, @)

. {4.8)
qy+bq +veg +c,q, =€, (1,4, ¢, @)
where a, b, ¢y, ¢, and € are positive constants; and a and € are essential parameters.
The approximate equations (4.3) may be written in the form
P, = —u(ube,p, +c,p,)Aw), P, = —p(ube,py - ;P ) AR
(4.9

p=alt,  a(u)=1+pth?

The solution of Egs {4.9) for fixed py is bounded
P, Gmi<h, (¢20)
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By (4.7), we obtain
Py =ut [~c (e~ wbPe,) py(t, w) +peblc, +¢,)p, (1, D]/ ()
3 S {—pe ble, + ey (1, 1) — c,{c, — uPbPe,) py (2, )]/ AW
from which we obtain the estimate
boy ,(t WI< WPk, (e e+ OWPY) (4.10)
In variables x, we obtain the following system of equations for (3.2)
dx fdt=x,, dx,jdt=x,
dx,/dt = —¢ x, - bx,+ u~lx, — py(t, 1) (4.11)
dx, fdt = —¢,x, — u7'xy — bXy ~ py(t 1)

The coefficients of the form v of (3.5) are defined as follows:

_ e+ b, +(1+cy)ce,] kT - e)
d,,= B » dy = Y
e, ¢, €6,
1 " [u2c,+b%c, +(1+¢)c,0,]
d,,= —— d,,= —, d.,. = 13 1%2 4.12
B 14 <, 12 bec, ( )
T 1 1+¢, 1+¢,
= R d,, = —, = s d.. = . d,.=
dys be, L 33 be, 34 =0 as b,

We now proceed to inequalities (2.10) and (3.7). Using expression (2.5) for the form v, assuming, to fix our
ideas, that ¢,>c, and using Eq. (2.8), we find that if u is small enough, then Apin(1) =—2p"2b(1 +¢;). The
roots of Eq. (2.9) are independent of . Thus, for any given €; and ;, inequality (2.10) will be true, provided
we take u* small enough.

If w is sufficiently small, it follows from (4.10), (4.11) and (4.6) that inequality (3.7) will hold with
N = p~Y(bey), M=p’h cic,. It is immediately seen from the equation |D(u)—pE| =0 that the quantity
Pmax () 18 Of the same order of magnitude in g as Ay, (1). Inequality (3.7) is thus true for sufficiently small p*.
It follows from Remark 1 that the solutions of Eqs (4.9) are acceptable for system (4.8) with respect to the
coordinates.

Example 2. Consider the system

9y +aboq, + o = evylt 4,9°,0) (@=1, ..., m) (4.13)

in which b, and ¢, are positive constants, and a>>0 and >0 are essential parameters.
The approximate equations will be

Py= v Py W=87, yg=c,/by) (4.14)

Their solution is pa(f, #) = PaoeXp {—RYat}, S0 that py (1, 1) = p? ¥ pa(t, p). Since |po (f, k) | <hy (120), it
follows that | p. (¢, u)| <u’h,, where h; and h, are suitably defined constants.
Putting x, = g, — Pult, 1), Xg = q o — P a(t, 1) as before, where 8 = m+ @, we obtain a system of equations
dxg/dt=xg, dxpfdt=—coqxq—p boxg— Pyt u)+ e, X, 1) (4.15)

which splits at € = 0 into m pairs of independent systems of equations of the type (3.2) in the variables x, and
XB .
For each pair of equations, we define a form (3.5)

ver = dag X3+ 2dag Xaxg + dagx} (4.16)

whose derivative (3.6) is (dv, /dt), = —2(xZ +x}), and the coefficients are defined by

ﬁ{l—"’ba' + a1l +¢4)] i uil+ Co)
d, i - S Dl Sk ) et = s =X 4. 7
Ol b aff P d, P ( 1 )

For system (4.15) we use the form (4.16) v = v, +. . . +v,,. Its derivative along trajectories of the system is,
by (3.14) and (4.6)
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m
v
=" —2ixi? =2 0221 25t 1)+ 9o (1, X, )] (g Xq + dggxg)

We now look at inequalities (2.10) and (3.7). Clearly, the roots of Eqs (2.8) and (2.9) are A, (1) = dye — dap/
dyg . va () = dgg. Considering expressions (4.17), we conclude that inequality (2.10) will hold for sufficiently
small values of w. The truth of inequality (3.7) for sufficiently small u is no less obvious. Indeed, as pu— 0 the
right-hand side of (3.7) decreases without limit. The left-hand side has a non-zero limit. We note that the
eigenvalues p(u) of the form v are determined directly from the equations

(dua—p)(dﬁﬁ—p)—dgﬂ=0 (=1, ..., m; g=m+a)

Choosing a sufficiently small value of u* to satisfy conditions (2.10) and (3.7), and using Remark 1, we
determine the value of the second essential parameter e. This shows that the solution of (4.14) is acceptable for
system (4.13).

In conclusion, we point out that the equations of motion of systems whose matrices of dissipative and
conservative forces have the form

B=albg gl +elbgi 1!, C=lcgbojl’ +elcg T

can be reduced to the form of (4.13).
In the case of system (4.13), estimates of the acceptability of a solution of (4.14) will also determine whether
the system can be decoupled.
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